

Rompicapi d'autore

SOLUZIONI DEI 15 QUESITI

GRUPPO UMI DEI LICEI MATEMATICI Unione Matematica Italiana

Rompicapo d'autore

LA CENA CON CAESAR

Liceo Statale "B. RESCIGNO", Roccapiemonte (SA)

A 27

B 33

C 950

D 1050

Girandosi, l'esploratore Math legge ML che in cifre romane corrisponde al numero

SOLUZIONE D 1050

Girandosi, l'esploratore Math legge ML che in cifre romane corrisponde al numero 1050 in cifre indo-arabiche.

Rompicapo d'autore

LA D.S. DEVE SBLOCCARE IL CELLULARE

IIS "E. FERMI", Policoro (MT)

A 36746233764

B 12345678910

C 36742633764

D 51216931365

Le lettere della parola

ENRICOFERMI

infatti, corrispondono a una delle tre o quattro lettere che si trovano sotto ogni numero sulla tastiera alfanumerica del cellulare. Per esempio, la lettera E è una delle tre lettere che si trova sotto il tre, la N sotto il sei....

Le lettere della parola

ENRICOFERMI

infatti, corrispondono a una delle tre o quattro lettere che si trovano sotto ogni numero sulla tastiera alfanumerica del cellulare. Per esempio, la lettera E è una delle tre lettere che si trova sotto il tre, la N sotto il sei....

Unione Matematica Italiana

Rompicapo d'autore

3

STUZZICA...MENTI

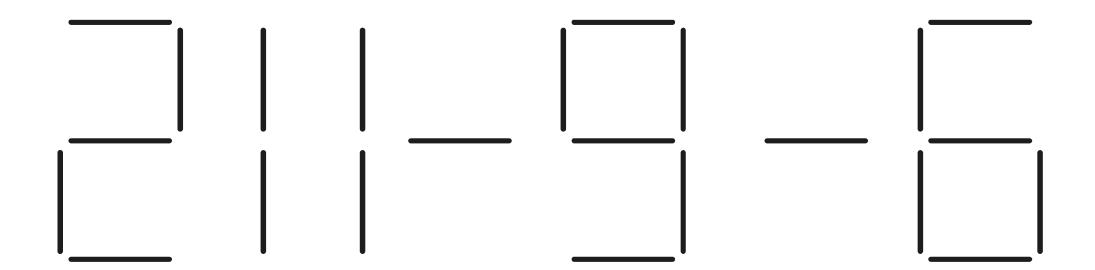
Liceo Scientifico "D. ALIGHIERI", Matera

A 17

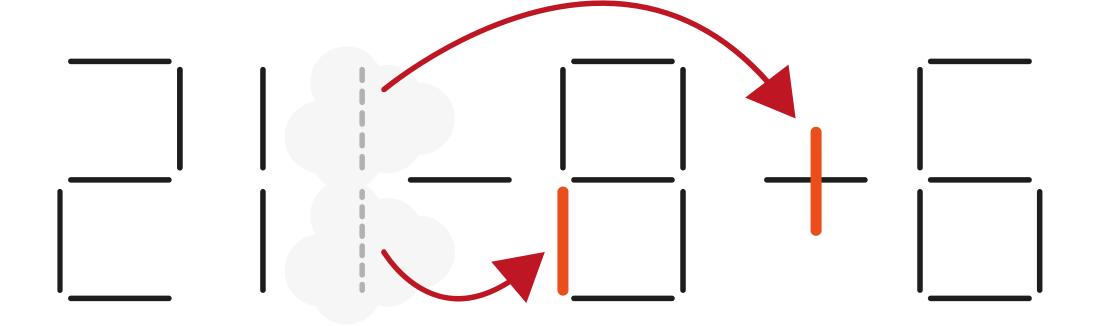
B 18

C 19

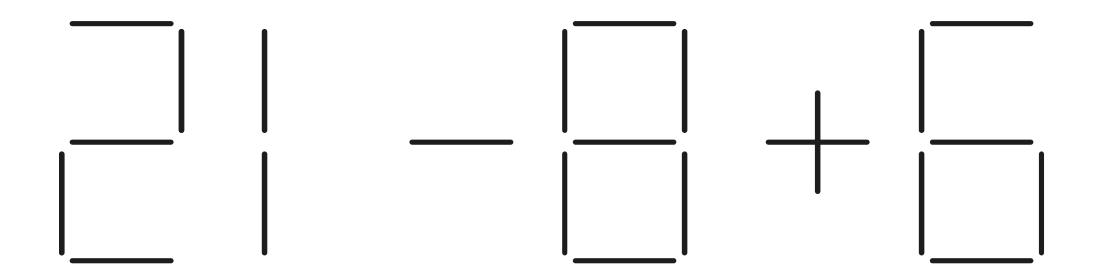
D 152



I due stuzzicadenti che formano l'ultima cifra 1 del 211 vanno riposizionati in modo tale che uno trasformi il secondo segno - in + e l'altro trasformi il numero 9 in 8.



I due stuzzicadenti che formano l'ultima cifra 1 del 211 vanno riposizionati in modo tale che uno trasformi il secondo segno - in + e l'altro trasformi il numero 9 in 8.



I due stuzzicadenti che formano l'ultima cifra 1 del 211 vanno riposizionati in modo tale che uno trasformi il secondo segno - in + e l'altro trasformi il numero 9 in 8.

Unione Matematica Italiana

Rompicapo d'autore

CAVALIERI E FURFANTI IN FILE

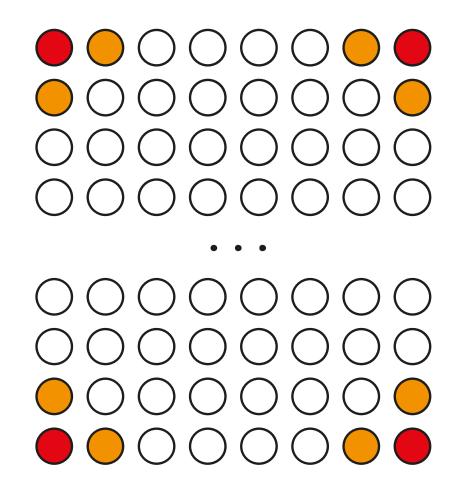
IIS CROCE-ALERAMO, Roma

A 0

B 1012

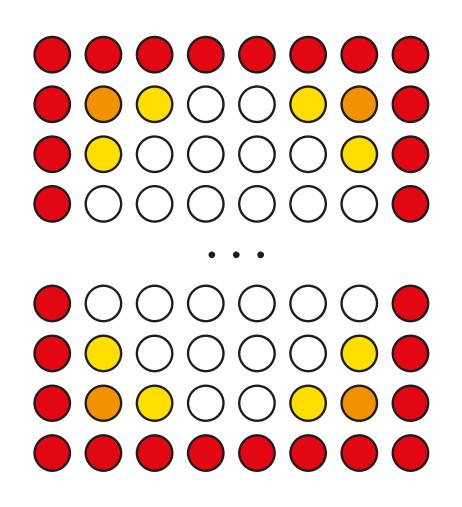
C 1518

D 2020



Si noti che gli abitanti ai quattro vertici del rettangolo hanno solamente due persone intorno, quindi non possono dire la verità e sono furfanti.

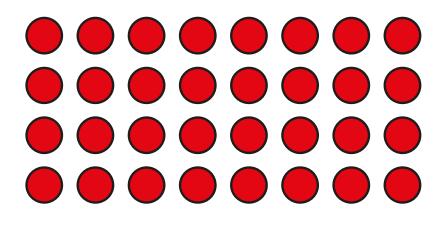
Allora anche gli abitanti sul bordo del "rettangolo" della fila accanto ai furfanti sui vertici hanno solamente due potenziali cavalieri accanto a sé, quindi sono furfanti anche loro.



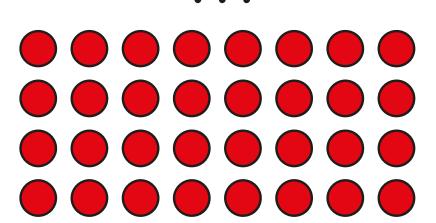
Attraverso una reazione a catena, si trova che tutti gli abitanti sui bordi sono furfanti.

Considerando il rettangolo interno al bordo di furfanti, per gli abitanti su questi vertici si possono trarre le stesse conclusioni, e così per tutto il nuovo bordo.

SOLUZIONE



Andando avanti strato dopo strato, si conclude che tutti gli abitanti sono furfanti. È impossibile che ci sia anche solo un cavaliere.



Il numero massimo di cavalieri è 0.

Rompicapo d'autore

5

SEI BIGLIE IN FILA

Liceo Statale "E. MAJORANA", Roma

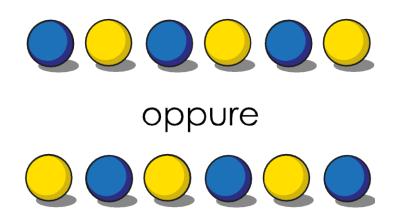
A 10

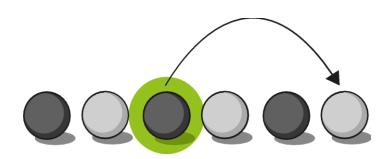
B 12

C 60

D 360

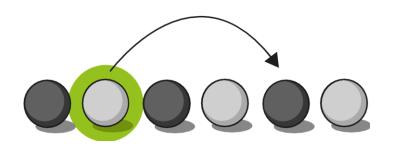
Affinché la configurazione sia ammissibile, i colori delle biglie devono necessariamente alternarsi, come mostrato a fianco (\rightarrow) .

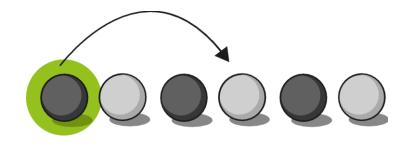




Supponiamo quindi d'ora in avanti che i colori siano alternati e concentriamoci sulla terza biglia: la sua «gemella» (cioè la biglia con lo stesso numero ma di colore diverso) dovrà necessariamente essere l'ultima, perché, tra le biglie non adiacenti, è l'unica di tinta diversa.

Per lo stesso motivo, la «gemella» della seconda biglia deve essere la penultima...



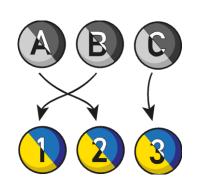


...e, per esclusione, la «gemella» della prima sarà l'ultima rimasta: la quarta.

Le uniche configurazioni ammissibili seguono quindi tutte lo schema mostrato accanto: colori alternati e numerazione del tipo A,B,C,A,B,C.

SOLUZIONE

B 12



Si è osservato all'inizio che esistono 2 colorazioni possibili. Per quanto riguarda le associazioni lettera → numero (← accanto è mostrato un esempio), basta considerare che esistono 3 scelte per associare la A, dopodiché ne restano 2 per la B e infine 1 per la C: complessivamente si hanno quindi 3·2·1=6 associazioni diverse.

Riassumendo, il numero di configurazioni compatibili con le condizioni poste dal problema è...

2×6=12

possibili schemi
di colore

possibili associazioni L

possibil

Unione Matematica Italiana

Rompicapo d'autore

6

SOMMA INFINITA

Liceo Scientifico Statale "G.B.QUADRI", Vicenza

A 1

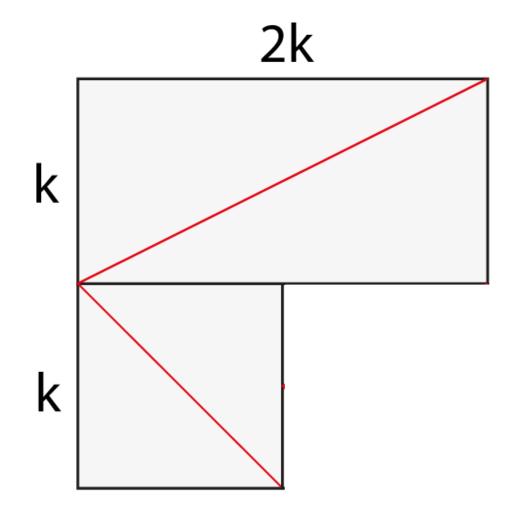
 $|\mathsf{B}| 4k^2$

C +∞

 $\mathsf{D} \left(\sqrt{10}\right) k^2$

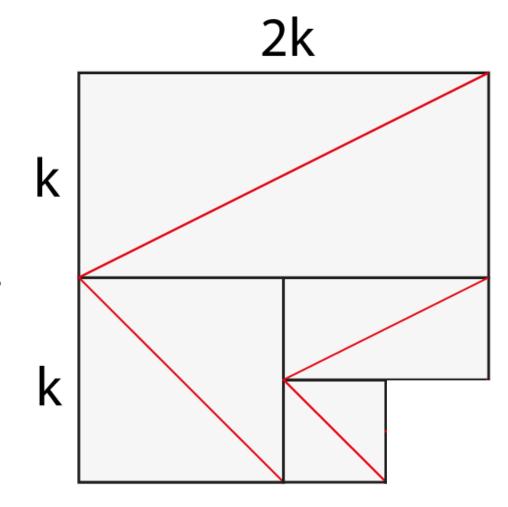
Questo problema, apparentemente dalla difficile interpretazione, ha una risoluzione molto semplice se guardato nel modo giusto.

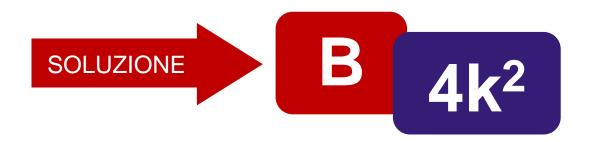
Infatti se disposti correttamente questi quadrati e rettangoli, ci si accorgerà che la somma tende ad una figura ben definita: un quadrato di lato 2k. Per arrivarci prima si dovrà rappresentare il quadrato e il rettangolo iniziali e poi quelli con la diagonale dimezzata (e quindi area che diventa 4 volte più piccola).



Questo problema, apparentemente dalla difficile interpretazione, ha una risoluzione molto semplice se guardato nel modo giusto.

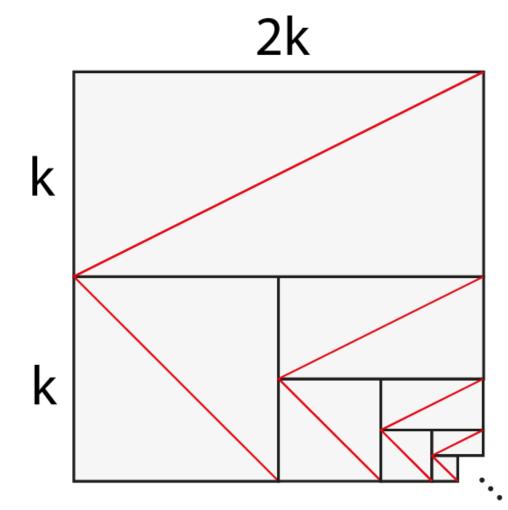
Infatti se disposti correttamente questi quadrati e rettangoli, ci si accorgerà che la somma tende ad una figura ben definita: un quadrato di lato 2k. Per arrivarci prima si dovrà rappresentare il quadrato e il rettangolo iniziali e poi quelli con la diagonale dimezzata (e quindi area che diventa 4 volte più piccola).





Questo problema, apparentemente dalla difficile interpretazione, ha una risoluzione molto semplice se guardato nel modo giusto.

Infatti se disposti correttamente questi quadrati e rettangoli, ci si accorgerà che la somma tende ad una figura ben definita: un quadrato di lato 2k. Per arrivarci prima si dovrà rappresentare il quadrato e il rettangolo iniziali e poi quelli con la diagonale dimezzata (e quindi area che diventa 4 volte più piccola). Se si ha un occhio attento ci si accorge che queste figure tendono ad un quadrato di lato 2k e quindi l'area si trova facilmente come 4k².



Unione Matematica Italiana

Rompicapo d'autore

TRE PUNTI E UNA CIRCONFERENZA

Istituto d'Istruzione Superiore "IL PONTORMO", Empoli (FI)

 $\begin{array}{|c|c|}\hline A & \frac{1}{8} \\ \hline \end{array}$

 $\boxed{\mathsf{B}} \frac{1}{3}$

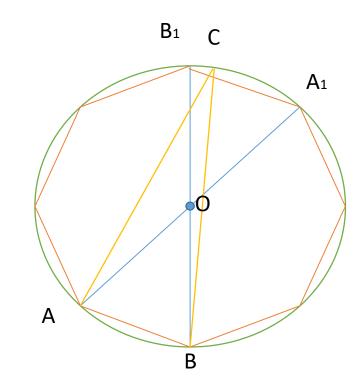
 $C \frac{1}{4}$

D indeterminabile

Dato che la corda AB è il lato di un ottagono regolare, l'arco AB è 1/8 della circonferenza.

Tracciati i diametri AA1 e BB1, affinché il centro O appartenga a ABC, il punto C dovrà cadere nell'arco A1B1.

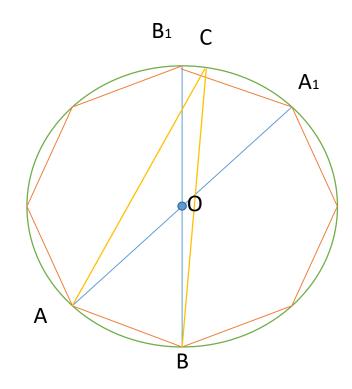
Poiché gli archi AB e A₁B₁ sono tra loro congruenti e congruenti a 1/8 della circonferenza



Dato che la corda AB è il lato di un ottagono regolare, l'arco AB è 1/8 della circonferenza.

Tracciati i diametri AA1 e BB1, affinché il centro O appartenga a ABC, il punto C dovrà cadere nell'arco A1B1.

Poiché gli archi AB e A₁B₁ sono tra loro congruenti e congruenti a 1/8 della circonferenza, la probabilità richiesta è 1/8.



Unione Matematica Italiana

Rompicapo d'autore

L'ANNIVERSARIO MISTERIOSO

Liceo scientifico " L. RESPIGHI", PIACENZA

A Lunedì	B LMdì

C	Giovedì
---	---------

D Venerdì

Innanzitutto è necessario contare il numero di giorni trascorsi dalla fondazione della città di Geometria:

$$1 + 2 + \dots + 199 = \frac{(199 + 1) \cdot 199}{2} = 19900$$

Successivamente si deve comprendere in quale giorno della settimana cade l'ultimo giorno dell'anno 199, cioè il 19900-esimo giorno dalla fondazione.

Dunque si divide 19900 per 8 e si considera il resto:

$$19900 = 2487 \cdot 8 + 4$$

Considerando la classe di resto modulo 8, si può dedurre che l'ultimo giorno dell'anno 199 è LMdì. Quindi:

il primo giorno dell'anno 200 è giovedì

Unione Matematica Italiana

Rompicapo d'autore

9

IL PORTALE DELLA CONOSCENZA

Liceo Scientifico Statale "V. VECCHI", Trani (BT)

A 3972

B 6378

C 6873

D 9531

PREMESSA: Non è necessario seguire gli indizi in ordine, quindi nel processo risolutivo si prende in considerazione il quarto indizio.

Considerando il **IV indizio**, escludiamo le cifre 0 e 5 poiché non divisori di 54, escludiamo poi anche il 9 perché confrontando il IV indizio e il I, dovrebbe trovarsi in entrambi i casi nella posizione corretta, ma ovviamente questo non è possibile in quanto si trova in posizioni diverse; quindi si ha ora la certezza che il 6 occupa la prima posizione e che 9, 5 e 0 sono cifre non presenti nel codice

Considerando il **III indizio**, siamo sicuri che il numero giusto nella posizione sbagliata sia il 6, di conseguenza il 2,1 e 4 non sono corretti; considerando ora i doppi delle cifre dell'inizio essi sono: 2,12,4 e 8, essendo il 12 a doppia cifra e avendo escluso precedentemente 2 e 4, **l'unica cifra accettabile è l'8** di cui però non si conosce la posizione.

Considerando il II
indizio, grazie alle
deduzioni precedenti
escludiamo il 5 e il 2, il 6
abbiamo verificato
essere corretto nella
giusta posizione, quindi
il 3 è una cifra presente
nel codice ma non
occuperà la quarta
posizione

PREMESSA: Non è necessario seguire gli indizi in ordine, quindi nel processo risolutivo si prende in considerazione il quarto indizio.

Considerando il I indizio, grazie alle deduzioni precedenti, escludiamo 9, 5 e 4, sappiamo ora che il 7 è presente nel codice e occupa la terza posizione

Considerando il I indizio, grazie alle deduzioni precedenti, escludiamo 9, 5 e 4, sappiamo ora che il 7 è presente nel codice e occupa la terza posizione

Ora sappiamo che le cifre sono 6,8,3 e 7. Inoltre il 6 occupa la prima posizione, il 7 la terza posizione e il 3 non occupa la quarta posizione quindi l'unica posizione che può occupare è la seconda. Di conseguenza l'8 occupa la quarta posizione e il codice corretto è 6378

Rompicapo d'autore

GOKU E L'ENIGMA DELLE 7 SFERE MATEMATICHE

Liceo Russell, Roma

A Carnot

B De l'Hôpital

C Eratostene

D

Non è possibile determinarlo univocamente

Determiniamo inizialmente quante sfere vi sono in ogni città/paese:

- La somma dei numeri (compresi tra 1 e 7) nella città di Carnot è 18 e tale numero si può ottenere solo con la somma 5+6+7 (i tre numeri più elevati);
- di conseguenza le altre due località possiederanno 2 sfere ciascuna.

Ragioniamo adesso sulle altre due città:

- a De l'Hôpital il prodotto di due numeri (compresi tra 1 e 4, poiché 5, 6 e 7 si trovano a Carnot) è 12, che può essere ottenuto da: 2*6 o 3*4 e tra le due opzioni l'unica possibile è la seconda;
- di conseguenza gli unici numeri rimanenti sono 1 e 2, il cui rapporto
 (2/1) è effettivamente 2.

Ragioniamo adesso sulle altre due città:

- a De l'Hôpital il prodotto di due numeri (compresi tra 1 e 4, poiché 5, 6 e 7 si trovano a Carnot) è 12, che può essere ottenuto da: 2*6 o 3*4 e tra le due opzioni l'unica possibile è la seconda;
- di conseguenza gli unici numeri rimanenti sono 1 e 2, il cui rapporto
 (2/1) è effettivamente 2.

La sfera n°2 si trova nel paese di Eratostene

III edizione del "Pomeriggio dei Licei Matematici"

Rompicapo d'autore

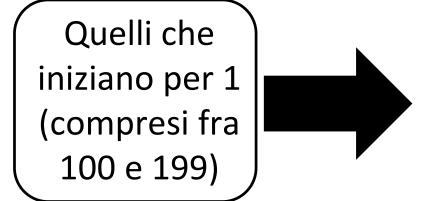
I NUMERI "PERFETTINI" DI ENRICO

Liceo Scientifico Statale "E. FERMI", Cosenza

A 20 B 23

C 26 D 29

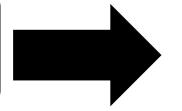
I numeri "perfettini" sono numeri composti da tre cifre, quindi saranno compresi fra 100 e 999. Per trovare la soluzione si procede con ordine iniziando a trovare i numeri "perfettini" più piccoli:



Sapendo che 1 è divisore di tutte le cifre da 1 a 9 (visto che la terza cifra deve essere divisibile per la prima), possiamo contare 9 numeri "perfettini" che iniziano per 1:

- 1. 111
- 2. 122
- 3. 133
- 4. 144
- 5. 155
- 6. 166
- 7. 177
- 8. 188
- 9. 199

Quelli che iniziano per 2 (numeri compresi fra 200 e 299)



Sapendo che 2 è divisore delle cifre 2, 4, 6 e 8, possiamo contare 4 numeri "perfettini" che iniziano per 2:

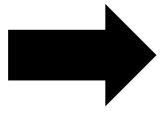
1. 212

2. 224

3. 236

4. 248

Quelli che iniziano per 3 (numeri compresi fra 300 e 399)



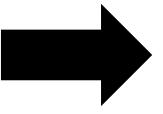
Sapendo che 3 è divisore delle cifre 3,6 e 9, possiamo contare 3 numeri "perfettini" che iniziano per 3:

1. 313

2. 326

3. 339

Quelli che iniziano per 4 (numeri compresi fra 400 e 499)



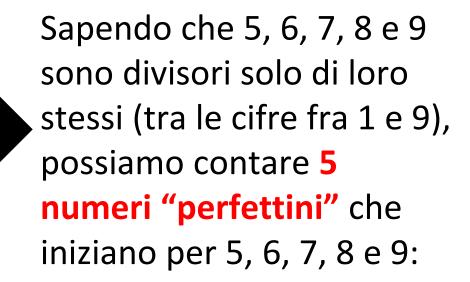
Sapendo che 4 è divisore delle cifre 4 e 8, possiamo contare 2 numeri "perfettini" che iniziano per 4:

1. 414

2. 428

SOLUZIONE B 23

Quelli che iniziano per 5, 6, 7, 8 e 9 (numeri compresi fra 500 e 999)



5. 919

Infine, sommando quanti sono i numeri "perfettini" che abbiamo trovato, abbiamo la soluzione:

$$9+4+3+2+5 = 23$$

III edizione del "Pomeriggio dei Licei Matematici"

Rompicapo d'autore

CALCOLI "INFERNALI"

Liceo Scientifico "P.S. MANCINI", Avellino

Α 6π	Β 9π
------	------

C 15π	
-------	--

D	18π		
---	-----	--	--

Calcoliamo AO:

se LAB = 60° allora CAO = 30° (CAL=90°)

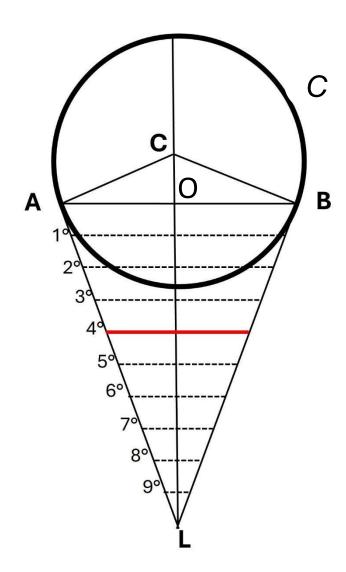
AO =
$$\frac{\sqrt{3}}{2}$$
r = 10 $\sqrt{3} \cdot \frac{\sqrt{3}}{2}$ = 15

Applicando il teorema di Talete al triangolo AOL impostiamo la proporzione:

15 : 10 = x : 6 (la base del triangolo la cui altezza è divisa in 10 parti uguali è 15, mentre la base del triangolo la cui altezza è divisa in 6 parti uguali è x)

$$x = \frac{15.6}{10} = 9$$

Trovato x, ovvero il raggio della circonferenza del quarto cerchio, calcoliamo la lunghezza della semicirconferenza \mathcal{C}_4 che risulta: π x = 9 π



Calcoliamo AO:

se LAB = 60° allora CAO = 30° (CAL=90°)

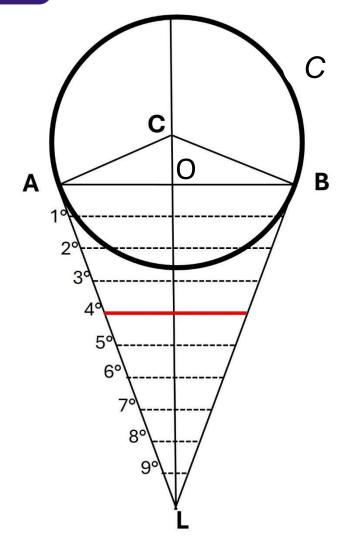
AO =
$$\frac{\sqrt{3}}{2}$$
r = 10 $\sqrt{3} \cdot \frac{\sqrt{3}}{2}$ = 15

Applicando il teorema di Talete al triangolo AOL impostiamo la proporzione:

15 : 10 = x : 6 (la base del triangolo la cui altezza è divisa in 10 parti uguali è 15, mentre la base del triangolo la cui altezza è divisa in 6 parti uguali è x)

$$x = \frac{15.6}{10} = 9$$

Trovato x, ovvero il raggio della circonferenza del quarto cerchio, calcoliamo la lunghezza della semicirconferenza $\mathcal{C}_{\!\!\!/}$ che risulta: π x = 9 π La risposta corretta è la B.



III edizione del "Pomeriggio dei Licei Matematici"

Unione Matematica Italiana

GRUPPO UMI DEI LICEI MATEMATICI

Rompicapo d'autore

GLI ALBERI DEL PIANETA LM 20-24

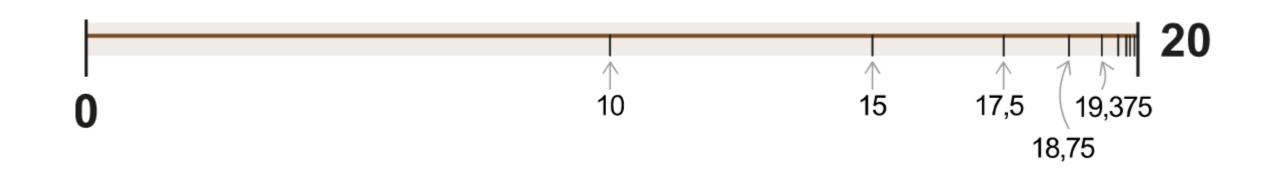
Istituto Internazionale "E. AGNELLI", Torino

	A 3	B 8
--	-----	-----

C 57	
------	--

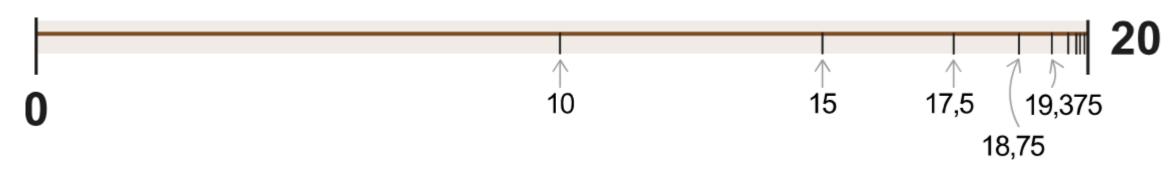
D Mai	
-------	--

Si è usato un segmento per rappresentare la crescita dell'albero, partendo da zero fino a 20 metri. All'anno 0, l'altezza è 0 metri. Alla fine del primo anno l'albero raggiunge i 10 metri di altezza. Negli anni successivi l'albero continua a crescere di un'altezza pari a metà dell'altezza precedente. Quindi a fine del secondo anno l'altezza sarà 15 metri (10 + 5 metri), alla fine del terzo anno, l'altezza sarà 17,5 metri (15 + 2,5 metri). E così via.



SOLUZIONE D Mai

Si è usato un segmento per rappresentare la crescita dell'albero, partendo da zero fino a 20 metri. All'anno 0, l'altezza è 0 metri. Alla fine del primo anno l'albero raggiunge i 10 metri di altezza. Negli anni successivi l'albero continua a crescere di un'altezza pari a metà dell'altezza precedente. Quindi a fine del secondo anno l'altezza sarà 15 metri (10 + 5 metri), alla fine del terzo anno, l'altezza sarà 17,5 metri (15 + 2,5 metri). E così via. Malgrado si aggiunga sempre qualcosa, l'altezza totale dell'albero non raggiungerà mai i 20 metri, perchè ad ogni anno si aggiunge sempre e solo la metà di quanto servirebbe per raggiungere la quota richiesta.



III edizione del "Pomeriggio dei Licei Matematici"

Unione Matematica Italiana

Rompicapo d'autore

TRIANGOLO AUREO... CHE PASSIONE!

Liceo Art. Mus. Cor. "GROPIUS", Potenza

A Paola	B Pietro
C. Silvia	D Luca

Il triangolo (acut) aureo è per definizione un triangolo isoscele acutangolo tale che:

$$\frac{b}{a} = \Phi = \frac{1+\sqrt{5}}{2}$$
=1,618...

È noto, per definizione di sezione aurea, che : $\frac{b}{a} = \frac{a}{b-a} = \Phi = \frac{1+\sqrt{5}}{2}$ =1,618...

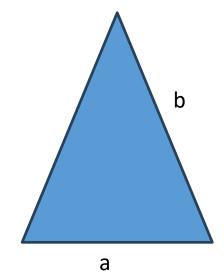
Segue che a=(b-a)· $\Phi \simeq 20,2$ cm

Applicando nuovamente la proporzione:

 $b=a \cdot \Phi \simeq 32,7 \text{ cm}$

Si conclude che:

 $2p = a + 2b \approx 85,6 \text{ cm}.$



SOLUZIONE B Pietro

Il triangolo (acut) aureo è per definizione un triangolo isoscele acutangolo tale che:

$$\frac{b}{a} = \Phi = \frac{1+\sqrt{5}}{2}$$
=1,618...

È noto, per definizione di sezione aurea, che : $\frac{b}{a} = \frac{a}{b-a} = \Phi = \frac{1+\sqrt{5}}{2}$ =1,618...

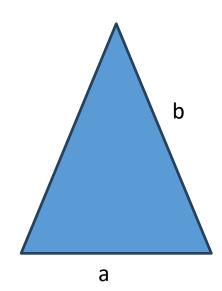
Segue che a=(b-a)· $\Phi \approx 20,2$ cm

Applicando nuovamente la proporzione:

 $b=a \cdot \Phi \simeq 32,7 \text{ cm}$

Si conclude che:

 $2p = a + 2b \approx 85,6 \text{ cm}.$



HA RAGIONE PIETRO. LA RISPOSTA CORRETTA È B

Osservazioni:

- ➤ nel testo del quesito è stato inserito «acutaureo» perché, come è noto, in letteratura le nomenclature di triangolo aureo e gnomone aureo non sono universalmente accettate, l'aggettivo pertanto evidenzia la proprietà geometrica del triangolo preso in esame;
- \triangleright nei calcoli gli studenti hanno utilizzato il valore di Φ approssimato alla terza cifra decimale e la misura dei lati è stata espressa con approssimazione alla prima cifra decimale

Secondo posto (a parimerito)

Secondo posto (a parimerito)

IIS CROCE-ALERAMO, Roma

(Cavalieri e furfanti in file)

Secondo posto (a parimerito)

IIS CROCE-ALERAMO, Roma

(Cavalieri e furfanti in file)

IIS "E. FERMI", Policoro (MT)

(La D.S. deve sbloccare il cellulare)

Secondo posto (a parimerito)

IIS CROCE-ALERAMO, Roma

(Cavalieri e furfanti in file)

IIS "E. FERMI", Policoro (MT)

(La D.S. deve sbloccare il cellulare)

Liceo Scientifico "D. ALIGHIERI", Matera

(Stuzzica...menti)

LA SCUOLA VINCITRICE È...

Liceo Statale "B. RESCIGNO", Roccapiemonte (SA)

(La cena con Caesar)

PREMIO ai RISOLUTORI

PREMIO ai RISOLUTORI

Liceo Pacinotti, Cagliari

(15 risposte corrette, ora di consegna 15:29)

PREMIO ai RISOLUTORI

ISIS A. MALIGNANI, Udine

(15 risposte corrette, ora di consegna 15:09)

PREMIO ai RISOLUTORI

Liceo Scientifico T.C. ONESTI, Fermo (AP)

(15 risposte corrette, ora di consegna 14:58)

Arrivederci a novembre 2024

